Multiplicity and concentration results for local and fractional NLS equations with critical growth
نویسندگان
چکیده
Goal of this paper is to study the following singularly perturbed nonlinear Schrödinger equation $$ \varepsilon^{2s}(- \Delta)^s v+ V(x) v= f(v), \quad x \in \mathbb{R}^N, where $s (0,1)$, $N \geq 2$, $V C(\mathbb{R}^N,\mathbb{R})$ a positive potential and $f$ assumed critical satisfying general Berestycki-Lions type conditions. When $\varepsilon>0$ small, we obtain existence multiplicity semiclassical solutions, relating number solutions cup-length set local minima $V$; in particular, improve result [37]. Furthermore, these are proved concentrate well, exhibiting polynomial decay. Finally, prove previous results also limiting setting $s=1$ $N\geq 3$, with an exponential decay solutions.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملExistence results for hybrid fractional differential equations with Hilfer fractional derivative
This paper investigates the solvability, existence and uniqueness of solutions for a class of nonlinear fractional hybrid differential equations with Hilfer fractional derivative in a weighted normed space. The main result is proved by means of a fixed point theorem due to Dhage. An example to illustrate the results is included.
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Differential Equations
سال: 2021
ISSN: ['1079-9389']
DOI: https://doi.org/10.57262/ade026-0910-397